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I On the Extraction of Angular Velocity from Attitude Measurements 

I.Y. Bar-Itzhackt, Richard R. Harman' and Julie K. Thienel' 

Abstract 

In this paper we research the extraction of the angular rate vector from attitude 
information without differentiation, in particular from quaternion measurements. We show that 
instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable 
for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating 
the need for recurrent covariance computation performed when a Kalman filter is used. This 
considerably simplifies the computations required for rate estimation in gyro-less spacecraft. 
Some interesting qualities of the Kalman filter gain are explored, proven and utilized. 

We examine two kinds of feedback loops, one with varying gain that is proportional to the 
well known Q matrix, which is computed using the measured quaternion, and the other type of 
feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a 
proportional feedback loop, and a proportional-integral feedback loop. The various schemes are 
examined through simulations and their performance is compared. It is shown that all schemes 
are adequate for extracting the angular velocity at an accuracy suitable for control loop damping. 

INTRODUCTION 

In most spacecraA (SC) there is a need to know the angular velocity. Angular velocity is 

needed for two major tasks; namely, attitude control, and attitude computation. When the attitude 

is given from an autonomous star tracker (AST) - for example', then, of course, the need for 

angular velocity exists only for attitude control. Traditionally, the SC angular rate vector is 

obtained from gyroscopes installed on board. In smaller, lighter and low-cost SC, there is often a 

desire to do away with gyros and use other means to determine the SC angular rate. Even in gyro- 
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equipped satellites there is a need to determine the angular rate by other means when the angular 

rate is out of range of the SC gyros or when a total gyro failure occurs. 

There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is 

known, in whatever parameters it is given, one can differentiate it and use the kinematics 

equation that connects the derivative of the attitude with the satellite angular rate in order to 

compute the latte8 ’. However, since the attitude is obtained from sensor measurements, the 

differentiation of the attitude introduces a considerable noise component in the computed angular 

rate vector. 

Another approach is that of using the attitude parameters, or the measured directions 

themselves, as measurements in some kind of a Kalman Filter (KF). In this case the kinematics 

equation that connects the attitude parameters, or the directions, with their derivatives, are 

included in the dynamics equation used by the filter, thereby the need for differentiation is 

eliminated4’ ’. However, the use of a of some kind requires the computation of a covariance 

matrix. Not only is this process cumbersome, sometimes it may also pose an accuracy problem. 

These accuracy considerations led to the use of the more computationally intensive covariance 

measurement-update formula6, square root filtering7, and other sophisticated approaches. 

In this work we investigate simple algorithms that do not require covariance computation. 

In particular we investigate the use of passive feedback loops for extracting the angular velocity 

from attitude information without differentiation. In our approach, the dominant factor is 

simplicity rather than accuracy, because for control loop damping, crude rate information is often 

sufficient. We start our investigation in the next section with an examination of the Pseudo- 

Linear Kalman (PSELIKA) filter for estimating angular rate when quaternion measurements are 

given. In particular, we consider the filter gain when the filter tracks the SC rates well. Some 
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, particular characteristics of the gain are observed and analytically proven. In the section that 

follows we introduce a simple realization of the PSELIKA which is based on these particular gain 

characteristics. This leads to very simple passive feedback systems, which are introduced in the 

following section. All the systems are tested with continuous quaternion inputs. Discrete inputs, 

with and without measurement noise are presented in the next section. The tests prove that the 

systems are suitable for rate estimation for control loop damping. Finally, in the last section we 

present our conclusions. 

ANGULAR RATE DETERMINATION BY ESTIMATION 

In this work, we consider the quaternion of rotation as the attitude measurement. The rate 

of change of the quaternion is described by the well-known equation [see e.g. Ref. 8, p.5121 

( 1 4  q=+nq 
where 

'[-ox] 0 

-aT 0 

and a,, a,, and 0, are the components of the angular velocity vector, o , T designates the matrix 

transpose and [-ox] is the cross product matrix of the vector -a. The cross product, [ax], of 

the general vector a is given by 

0 -a, a, 

where a,, a, , and a, are the components of a . Equation (1 .a) can also be written as 

where 
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The elements q and e are respectively the scalar part and the vector part of the quaternion; that 

is, qT = [ eT q] , and I, is the n-dimensional identity matrix. 

The angular dynamics of a rigid body SC is given in the following equation [S, p. 5231 

I h + h + a x ( I a + h ) = T  (3) 

where I is the SC inertia matrix, his the angular momentum of the momentum wheels, and T is 

the external torque acting on the SC. Since the inertia matrix, I, is invertible we may write this 

equation as 

C;,= I-'[(Io+h)x]a+I-'(T-h) 

f (a) = I-'[(Ia + h)x]a + I-'(T - h) 
Define f (a) as follows 

then we can augment Eqs. (2.a) and (4), and add to them white noise vectors to reflect modeling 

uncertainty. This yields the state space augmented equation 

[ :] = [ ::] +[ 3 
In the case considered where the measured entity is the quaternion itself, the measurement 

model is 

where q, is the measurement, and v, is an appropriate measurement noise. Equations (5) have 

been used to estimate the angular rate with much success either after linearization, using an 

extended Kalman filter (EKF)97'0 or, after a simple manipulation by a pseudo-linear Kalman filter 
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(PSELIKA)". In fact, when the measurements come at a relatively fast rate, satisfactory rate 

estimate can be achieved when the nonlinear SC dynamics model of Eq. (4.a) is replaced by the 

following simple linear Markov modelI2 

0 = - N o +  V, (6)  

in which N = -nI, , n is an inverted time constant, and v, is an appropriate noise vector'. In 

this case we obtain the following model 

[(!]=[:;; -1,n '"][q]+[;:] o (7) 

The dynamics model of Eq. (7) and the associated measurement model of Eq. (5.b) were used 

successfully for estimating SC angular rates using PSELIKA". PSELIKA is an ordinary linear 

Kalman filter (TSF) where state-variables in the dynamics and the measurement matrices, are 

replaced by their current best estimate. 

As seen in the following continuous general linear KF algorithm, 

P = Ff  + K[z - Hf]  

a KF of any kind (or a Luenberger observea3) operates as a feedback system. The difference 

between measurement, z , and its estimate, H i  , is multiplied by the gain, and the product is used 

to correct the state estimate rate of change. In our case of rate estimation, when the continuous 

PSELIKA is applied to the dynamics and measurement models that are given, respectively, in 

Eqs. (7) and (5.b), Eq. (8) becomes 

which can be written as 

It should be noted that this is just a model and not the true description of the rate vector. 
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A block diagram realization of the last equation is shown in Fig. 1. Note that Q is a function of 

q. In fact, since the AST yields very accurate quaternions, we can use q, rather than q to 

evaluate Q . The Kalman gain components K, and K, are, of course, computed as a part of the 

usual gain computation of the KF. 

Fig. 1: Block Diagram Representation of the PSELIKA Filter Rate Estimator 

Although in practice the discrete formulation of the filter algorithms are implemented, we 

interchangeably use the continuous formulation in order to investigate certain qualities of the 

filters. This is permissible because the effect of a continuous filter can be considered as that of a 

discrete filter running at extremely small step size between measurements. 

Qualities of K, and K, 

In estimating the angular velocity using quaternion measurements and the PSELIKA filter, 

the gains K, and K, have special forms that could be used to our computational advantage. To 

explore these qualities, it is convenient to consider the continuous KF algorithm as a discrete 
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algorithm. Omitting, for convenience, time labeling, the formula for computing the discrete 

Kalman gain is 

K = P(-)HT [HP(-)HT + R]-' (1l.a) 

where P(-) is the a-priori covariance matrix, His the measurement matrix, and Ris the 

covariance matrix of the measurement noise, all at time t, . From Eq. (5.b) 

H =[I4 01 (1l.b) 

For this particular measurement matrix one obtains 

where Pll(-) and P12(-) are sub-matrices of P(-) as seen below 

From Eq. (1 1 .c) we obtain 

K, = P11(-)[PJ-)+ RI-' 

K, = P:,<->[p11<-> + R3-l 

(1l.c) 

(1l.d) 

Since PI (-) and R are symmetric, fiom Eq. (1 1 .f), it is clear on the outset that K, is symmetric 

too. In order to examine the form that K, takes, and to further examine the form of K, , consider 

the transition matrix fiom time tk-l to t, . Let A = t, - tk-' then A ,  the transition matrix, is given 

by A = exp(FA) . For small A the first order approximation of the exponential function suffices. 

It is 

(12.a) 
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Assuming that the process noise is white, that the variance of each quaternion state is qq and 

each angular velocity state is q, , the a-priori covariance matrix at time t, is computed as follows 

(12.b) 

where Po(+) is the initial covariance matrix and PI(-) is the a-priori covariance matrix at time 

t, . Following the usual practice, we choose Po(+) as 

Using Eqs. (12), one obtains 

Neglecting, where appropriate, terms containing A2 yields 

(12.c) 

(12.d) 

(12.e) 

Let R = 514, then using the last equation, K, , the Kalman gain at time t, , is computed as 

follows 

Define 

then K, can be written as 

K, =[ ] 
Q'W 

(12.i) 
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This gain matrix has a very peculiar form. The question is whether this peculiarity is a 

consequence of the fact that Po(+) is a diagonal matrix. To answer this, we go through one more 

iteration. To do that, we compute, PI (+) , the updated covariance matrix as follows 

Define the following constants 
Y = (1 - a), (P, + rlq Iq + <a2 
x = [3P"A - PA(P, + 11,)1(1-a> + a 5 P A  
6 = (1 - 2nA)p, + q, - PpoA2 + P2A2(pq + q,) + <P'A' 

= (1 - 2 W P ,  + 11, 
then Eq. (1 2.j) can be written as 

P,(+)=[ Q'x 0x1 136 

(12.k) 

(12. e )  

Next we propagate this covariance matrix to time point t, 

P,(-)P,(-) = A,P,(+)AT + G 

3QA 04,3 ] + [ qq14 04.3 j (13.a) 
(1-d)13 03.4 77013 

This results in 

(13.b) 1 I,y + QQ'Ax + iQQ'A'8 + qq14 
Q'x +iQ'AS - Q'nhx -iQTnA26 

QX + +QA6 - Q ~ x  -+ad's 
13(1 - 2nA + n2A2)6 + q,13 

P2(-) = 

Examination of Eq. (12.k) reveals that x = x' A ; therefore, xA=x'&. Neglecting all expressions 

containing A2 in Eq. (1 3 .b) yields 

(13.c) 
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or 

(1 3.d) 

Since P2(-) and PI(-) (see Eq. 12. l )  have the same form, and since H and R are constant 

matrices, K, has the same form as K, and P,(+) has the same form as Pl(+) . This rule prevails 

in all future gain and covariance matrices, consequently 

(14.a) 

The approximations made in deriving the expression for Kn have been proven to be justified in 

the numerous runs that were made. As an example, in one run (the data of which will be 

presented in the ensuing) we obtained the following Kalman gain matrix at t,,, = 23 sec . 

0.9198 -0.0003 -0.0004 -0.0010 
-0.0003 0.9199 -0.0004 -0.0009 
-0.0004 -0.0004 0.9196 -0.0012 
-0.0010 -0.0009 -0.0012 0.9172 
7.5994 3.1834 - 2.3294 - 2.4496 

- 3.1834 7.5994 2.4496 - 2.3294 

2.3294 - 2.4496 7.5994 - 3.1834 

Kq,2300 

Kw,2300 
(14.b) 

In this work we consider the continuous time case. In practice, though, measurements are done 

indiscrete time. The question is whether the assumption that the time interval, A , is small, can be 

justified in the case where the time between measurements is large. Since Pk(+) and Pk+l(-) 

have the form presented in Eq. (13.d) where a, b, and c are scalars. Therefore, if one divides the 

time interval between two discrete measurements into sub-intervals, one can compute the 

propagation of the covariance matrix between the measurement time points as successive 

covariance propagation through the sub-intervals where the format of Eq. (13.d) is preserved. In 
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doing so, one can always choose A ,  the sub-interval size, to be as small as desired. Thus it can be 

always chosen such that assumption A* x 0 is certainly true. Hence the assumption, on which the 

form of Eq. (14.a) was obtained, is fully justified. In conclusion, even propagation over a large 

time interval results in a covariance matrix which has the format of Eq. (13.d). Therefore the 

Kalman gain matrix takes the form of Eq. (14.b) even when the time interval between two 

consecutive measurements is large. 

The general results K, = aI, and K, = Q;fp,A can easily be reasoned as follows. Consider 

the upper part of Eq. (9); namely 

q=+Q&+Kq(qm-(i)  (15) 

When at some point iij and q equal, respectively, o and q, , then the solution of the equation 

q = 1/2Q& settles on q, (and it is assumed that the latter is very accurate). However, when this 

is not the case, the computation of q is driven towards the correct value by the difference 

(9, - q) . Since this difference directly affects the computation of the estimated quaternion, it is 

logical that each one of the 4 components, and no other component of the difference, drive the 

corresponding component of q ; that is, K, is a diagonal matrix. Moreover, as there is no reason 

to prefer any component over the other 3, K, has to be of the form K, = aI, where a is some 

constant. In particular, a can be equal to 1; that is, K, = I, . 

Let us consider now the lower part of Eq. (9); namely 

&I = -N&+ K,(q, - 4) 

As will be shown later (Eq. 18.c), a least square estimate of & is given by 
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& = 2QTq (17) 

When & is equal to o and q = q, , q will stay equal to q, (see Eq. 15); however, as indicated 

in Eq. (16), when 4 z q, , the difference between the two serves as a signal for changing & in 

the correct direction. According to Eq. (17) the rate of change of a quaternion influences the 

estimate of 6 through 2QT. This corresponds to the conclusion expressed in Eq. (14.a) that K, 

is proportional to Q' . 

In the next section, where we compute the angular rate using a simple feedback loop, we 

will take advantage of the approximations of K, and K, . 

PSELIKA BASED RATE EXTRACTION FEEDBACK LOOP 

Following the discussion on the form of the gains K, and K, in the preceding section, 

we use in the block diagram of Fig. 1 the appropriate gain forms. The resultant block diagram is 

shown in Fig. 2. Since q is very accurate, we use Q(q,)that we denote by Q, rather than 

Q(q) . Also note that nI, = N . Only two parameters; namely, u and n need to be determined by 

tuning. 

Fig. 2: Block Diagram Representation of the PSELIKA Filter Rate Estimator 
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We ran a simulation with u = 5500 and n = 0.1 l/sec. We chose a baseline angular 

velocity pattern that was composed of various features. It included an oscillatory part, abrupt 

changes, ramps and a straight line, all at different levels. This angular velocity generated perfect 

q m  

Fig. 3 (red line) presents the nominal baseline angular velocity components together with 

their estimates. The components of the rate estimation error are shown in Fig. 4. The difference 

between the measured and estimated quaternions is shown in Fig. 5. 

True and Estimated Rate 

0 50 100 150 200 

$ 4 1  
1 I I I 

0 50 100 150 200 

0 50 100 150 200 
Time (sec) 

Fig. 3: True (red line) and Estimated Rate History for the PSELIKA Derived Loop 

Th~s rate will serve as a baseline rate for all the tests that follow. 
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r -0.11 l I j 
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Fig. 4: Rate Estimation Error for the PSELIKA Derived Loop 

- Delta Quaternion 
" 1  1 

I I 1 

200 -5' 

5, , , , 

0 50 100 150 

0 
-5 I I 1 

0 50 100 150 200 

5 
0 --+ 

I I 1 

0 50 100 150 200 
-51 

, I 5, 1 
0 -- 

-5 __A- 1 

0 50 100 150 200 

Fig. 5: Quaternion Estimation Error for the PSELIKA Derived Loop 
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1 .  

~ SIMPLE PASSIVE FEEDBACK SYSTEMS FOR ANGULAR RATE EXTRACTION 
I 

Borrowing the notion that the angular rate is estimated by a KF in a feedback manner, one 

can raise the question whether the rate can be estimated using a simple feedback loop when the 

attitude is available almost continuously. The logic behind this concept is as follows. If a 

feedback loop contains a node which is an input to an integrator, then the variable at the node is 

the derivative of the output of the integrator. If that output is subtracted fiom the measured 

quaternion, and the resulting difference is fed forward into the node in a way that drives the 

difference to zero, or almost zero, then the output of the node is approximately equal to the 

measured quaternion. Therefore the variable at the node is very close to the quaternion time 

derivative. When the latter is known, then a good estimate of the angular rate can be computed. 

Before proceeding with the exposition of the feedback control loop idea, we first show how the 

angular rate can be computed fiom the quaternion time derivative. 

Angular Rate Determination from Quaternion Rate 

Eq. (2.a) is repeated here 

q = + Q O  (2.4 
where Q is as given in Eq. (2.b). If q and q are known, then we can obtain the following least 

square estimate14 of o 
C;, = 2Q'q 

where Q# is the pseudo-inverse of Q , given by 

Q# = (Q'Q)-'Q' 

(1 8.a) 

(1 8.b) 

Using the fact that Q'Q = I, and Eqs. (18), one obtains the following least square estimate of the 

rate vector 
Cj = 2QTq (1 8.c) 
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We note that this form corresponds to form of the K, gain of Eqs. (14). 

. 
K 

' i  

The use of Eq. (18.c) requires the differentiation of q . However, as mentioned in the 

Introduction section, this introduces unwarranted noise in the computed angular rate. However, 

when used in conjunction with the quaternion derived through feedback, the differentiation is 

eliminated. The elementary feedback method for estimating the angular rate is shown next. 

A Simple Gain Feedback Loop 

The ability to achieve satisfactory rate estimates using a relatively simple feedback loop 

with a time varying gain such as in Fig. 2, raises the question whether it is possible to perform the 

task with an even simpler feedback loop. The simplest control loop for deriving q from the 

Id' - 4 

measured quaternion, q, , and computing 6j from it, is depicted in Fig. 6. As mentioned 

........................... " . 
a 
a 
a 
a 
a 
a 
m 

Fig. 6: A Simple Gain Feedback Loop for Computing a Rate Estimate. 

earlier, when q follows q, , q follows q ,  thus the estimation of o is possible, as indicated in 

Eq. (18.c). When K is a diagonal matrix, the loop is stable for any positive values on the main 

diagonal of K. A simulation was run of the feedback loop in Fig. 6 .  The gain matrix, K , in this 

simulation was 7 e I, . The components of the true and estimated rates are presented in Fig. 7 and 

the difference between them is shown in Fig. 8. Fig. 9 presents the quaternion estimation error 

components. 
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True and Estimated Rate 

8 1  v) 

PO s 
X 
3 -1 
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s 

0 50 100 150 200 

0 50 100 150 200 
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Fig. 7: True (red line) and Estimated Rate History When Using the Simple Feedback loop 

Rate Estimation Error 
n 0.21, I I 

U -0.2 ' I I 1 

0 I 

0 50 100 150 200 
0.21, I I 

u -0.2' I I I 
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I 

0 50 100 150 200 
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Fig. 8: Rate Estimation Error When Using the Simple Feedback loop 
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I 

Fig. 9: Quaternion Estimation Error When Using the Simple Feedback loop 

An Integral Feedback Loop 

0 

The advantage of the previous scheme is its simplicity. Its disadvantage is its limited 

accuracy. This stems from the fact that for very high gains E is a very small signal that contains 

digital and sensor noise. This noise is then multiplied by a large gain to produce a very noisyq . 

As a result, the estimated rate is of low fidelity and is very noisy too. On the other hand, for very 

I_ 

low gains, E is not small; that is, q does not follow q, closely, hence q is not close enough to 

q, ; therefore, the estimate of the angular velocity is of low quality. If, however, we can isolate 

q from E ,  then we can keep E very low, thereby force q to follow q,very closely, and yet 

maintain the closeness of q to q, . This can be done by replacing the pure gain in the loop of 

Fig. 6 by a gain and an integrator; that is, replacing K by K /  s . This, however, will generate a 

0 -- 1 

I I I 
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marginally stable loop with poles on the imaginary axis. To stabilize this loop, we can shift the 

marginally stable poles to the left by changing K /s  to K/(s + a)  which is, basically, a low-pass 

filter. This loop block diagram is shown in Fig. 10. One can tune Kand a to achieve the 

desirable performance. The components of the rate and quaternion estimation errors for 

K = 10,000 and a = 100 are shown, respectively, in Figs. 11 and 12. A comparison between the 

results of Fig. 12 and the results presented in Fig. 8 indicates that the added low-pass filter 

reduces the rate estimation error and eliminates the numerical noise as well. 

........................... " . 

. . . 

Fig. 10: A Stable 2nd Order Feedback Loop for Computing a Rate 
Estimate. 

A comparison between Figs. 9 and 13 reveals that E is about two orders of magnitude smaller 

when applying the feedback integral-loop. Thus indeed, we succeeded in forcing q to follow 

q,very closely, while maintaining the closeness of q to q, .  As a consequence the rate 

estimation error is much smaller, as indicated by the comparison of Figs. 8 and 12. 
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True and Estimated Rate 

0 50 100 150 
~ 

200 

5' -1 
I 1 1 1 1 

0 50 100 150 200 

H s 
g -1 

0 50 100 150 200 
Time (sec) 

Fig. 11: True (red line) and Estimated Rate History When Using the Integrated Feedback 
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Fig. 12: Rate Estimation Error When Using the Integrated Feedback 

- 20 - 



Delta Quaternion 
---r----- -- x I O 4  

21 

200 
-c- 
0 50 100 150 

I 
x I O 4  

2 

0 e-,-,--,'---..-/.-, - 

-2 

- 
0 50 100 150 200 

I I 

lo4 
2 I , 
0- w' - 

-2 

/, 

I I I 

200 0 50 100 150 
x IO4  

2 , I 

0- 
-2 

_I___ - - I I 

0 50 100 150 200 

Fig. 13: Quaternion Estimation Error When Using the Integrated Feedback 

RATE-ESTIMATION WITH NOISY QUATERNION MEASUREMENTS 

In the previous sections we considered ideal quaternion measurements. It is interesting 

to examine realistic cases where the measurements include measurement errors and learn of their 

effects on the rate estimation techniques presented hitherto. A typical lateral measurement error 

of an AST is about 40 arcsec. This translates to about 0.0002 rad (see the Appendix). Such white- 

noise error at a rate of 1 sec translates to an equivalent white noise error of 0.00001 rad when the 

measurements are taken every 0.01 sec, which is the step size of our simulation runs (see Eq. 8.3- 

24 in Ref. 14). Using this value as the standard deviation of numbers drawn from a Gaussian 

distributed random number generation; we reran the cases presented in the previous sections. In 

Figs. 14 and 15 we present the true and the estimated rates when we ran the PSELIKA rate 

estimation loop shown in Fig. 2. Similarly, Figs. 16 and 17 present the same for the simple gain 
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feedback loop of fig. 6, and finally, the plots in Figs. 18 and 19 present the results for the stable 

second order feedback loop shown in Fig. 10. 

Adding noise to the measurements induces noise in the estimated rates, but the estimated 

rate components closely follow the true rate components. 

CONCLUSIONS 

In this work we investigated the possibility of extracting the angular velocity vector from 

quaternion measurements without resorting to Kalman filtering. Avoiding Kalman filtering rids 

us of the cumbersome recursive computation of the covariance matrix. It was found 

experimentally, and then justified, that when estimating the angular velocity from quaternion 

True and Estimated Rate 

0 50 100 150 200 
I 1 

0 50 100 150 200 

V I  I 

0 50 100 150 200 
Time (sec) 

Fig. 14: True (red line) and Estimated Rate History for the PSELIKA Derived Loop 
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Rate Estimation Error 
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Fig. 15: Rate Estimation Error for the PSELIKA Derived Loop 

True and Estimated Rate 

0 50 100 150 200 

0 50 100 150 200 

I 

0 50 100 150 200 
Time (sec) 

Fig. 16: True (red line) and Estimated Rate History When Using the Simple Feedback loop 
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Fig. 17: Rate-Estimation Error When Using the Simple Feedback loop 

True and Estimated Rate 
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Fig. 18: True (red line) and Estimated Rate History When Using the Integrated Feedback 
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Rate Estimation Error 
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Fig. 19: Rate Estimation Error When Using the Integrated Feedback 

measurements using the Pseudo-Linear Kalman filter and a simple dynamics model, the Kalman 

gain has a peculiar structure. The part of the gain which influences the quaternion estimate is 

proportional to, and usually very close to, the four dimensional identity matrix. The part that 

influences the rate estimate is proportional to the transpose of the Q matrix from the cinematic 

quaternion equation. Using this quality, a passive feedback loop was designed in which only two 

scalar parameters had to be tuned in order to obtain good rate estimates. As mentioned, this 

feedback loop uses the Q matrix. Therefore, although it is a passive system, it has a time-varying 

gain, and thus it is a linear system which is time varying. 

Two other feedback loops were also introduced which are passive, as well as constant 

parameter systems. The systems consist of four simple decoupled loops. The first feedback 

system employs a simple diagonal gain matrix which multiplies the four components of the 
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difference vetween the estimated and measured quaternion. Each element of the amplified 

difference is fed into an integrator, the output of which is a component of the estimated 

quaternion. Therefore, the input to each integrator is the derivative of the estimated quaternion. 

With these derivatives on hand, the rate estimate is obtained by a known simple linear, time- 

varying transformation. The second feedback system constitutes an improvement on the first one. 

It contains an added pole that enables a more accurate estimation of the angular rate. 

Simulation results indicate that all three feedback systems presented in this work are adequate 

for deriving the angular rate vector from frequent quaternion measurements for the purpose of 

attitude control loop damping. 

Although we only considered quaternion measurements as input to the rate estimation 

feedback loops, vector measurements can be handled too. This is done by applying the method 

presented in reference 15 where a measured unit vector and its expression in the reference 

coordinate system are converted to a pseudo-measured quaternion. 
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Appendix 

The purpose of this appendix is to show how we determined the standard deviation of the 

quaternion measurement error when given the AST angular error. Let the pointing error of its 

Euler vector be dq,, dqy, dq, (note that these errors are not independent), and let the angular 

error about this vector be denoted by dq.  The equations relating the nominal quaternion 

components to the nominal components of the Euler vector are 
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q1 = siny-cosa, 

qz = sin?-cosa, 

q3 = sinT.cosa, 

2 

2 

2 

q4 = cos? 
2 

where cos(a,) = dcp, / c p  i = x, y, z . Perturbation of the quaternion components yields 

dq, =-COS- -COS~,  1 c p  -dq-sin--sina, cp -da,  

1 0  cos-. cos ay . dcp - sin- cp - sin ay day dq, = y  
2 2  2 

2 
1 c p  cp cos- .cos a, e dcp - sin - sina, da,  

%3=y 2 
dq, = --sin--dq 1 c p  

2 2  

Assuming worst case for each component (sine as well as cosine functions equal 1 and the 

negative term eliminated) we obtain: 

1 
dq, = Tdcp 

1 
2 

dq, = --dV 

We were given the error value d<p=40 arcsecwhich translates to about 2 e-4rad. We 

conservatively choose the standard deviation of each one of the components to be equal to the 

differential of that component, hence 

1 1 
2 2 

ui," =-dq =-2  e-4 rad= 1 e-4 rad i = 1 ,2 ,3 ,4  
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where n is the discrete time step, and, as before, i denotes the quaternion component number. 

Then 

(A.6) 
2 Qi,, = 02 = 1 e-8 rad i = 1,2,3,4 

Using the approximate formula for transforming variance (discrete sequence) to power spectral 

density (continuous process) (Ref. 14, Eq. 8.3-24) we obtain 

Q. I,n =Qi*At,, (A.7) 

For a time interval between two consecutive measurements of 1 sec we obtain 

- Qi,,, = 1 e-8 rad2 Q. =---- Qi,n - Qi n 

At,, 1 

Using the same transformation formula as before, we find that for a measurement time interval of 

0.01 sec, the equivalent variance is 

hence 

Q~,,, = Qi .0.01= 1 e-10 rad2 

0 i . n  = Qi,n 1/2 = 1 e-5 rad 

(A.9) 

(A. 10) 

This is the standard deviation that we use to draw numbers for simulating the quaternion noise. 

We draw the numbers from a Gaussian random number generator of zero mean. 
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